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PREFACE 

Part of the Project RAND research program consists of 

basic supporting studies In mathematics.    A problem frequently 

occurring In applications Is that of determining the maximum 

or minimum value of a function subject to prescribed 

constraints. 

In the present Memorandum the authors show how the 

mathematical technique of the maximum transform can often be 

applied effectively to this problem. 
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SUMMARY 

In this Memorandum the authors consider the general 

problem of determining the maximum value of a function of the 

form 

N 
F(X, ^Xg* • • • *3Cj.j ■  £  84 (x^/ 

1-1 

N 
Z 
L- 

maximum transform, defined by 

over the domain  £ x4 - x, x, > 0. They show how the 
1-1 1      1 

f(y) - M(P) - max [F(x) - xy], 
x^O 

can be applied to problems of this type. 
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ON THE MAXIMUM TRANSFORM AND SEMIGROUPS 
OF TRANSFORMATIONS 

1.  INTRODUCTION 

The problem of determining the maximum of the function 

N 
(1.1)    F(x1,x2,...,xN) - 2 g^ix.^ 

1-1 

N 
over the domain DM defined by  £ x.. - x, x, > 0,    Is one 

w 1-1 ^^      :L 

with various ramifications and applications. Analytic solu- 

tions and computational algorithms have been obtained In a 

number of ways; see Karush [?]* Bellman [2], Bellman and 

Karush [j]. We shall now discuss a new way of generating 

solutions of (1.1). Let g(xia) be a scalar function of the 

scalar variable x and the M-dlmenslonal vector a with the 

group property that 

(1.2)     max  [g(x1,a) + g(xp,b)] - g(x,h(a,b)), x,,^ ^ 0, 
xl+x2"x 

where h(a,b) Is a known function of a and b. It follows 

Inductively that 

(1.3)   max 
DN 

I  6(V*(k)) -gCW1)^2),...,^))), 
:-l   K 

where D  is as above and h(a' ',a^ s...,a^ ') Is obtained 
N 

from   h(a,b)    In a recurrent fashion.    The function   g(x,a) - axp, 

0 < p ^ It    with   a 2 0»    is a function of the desired type. 

How can we generate classes of functions with this property, 

and can we determine all of them? 
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2.  THE MAXIMUM TRANSFORM 

In previous papers [3*^5]» we discussed the transform 

(2.1)    f(y) - M(F) - max [F(x) - xy], 
x^O 

a transform which plays a basic role in the study of convexity; 

see Fenchel [6] and Beckenbach and Bellman [1]. This transform 

possesses the important dissolving property 

(2.2) M max      [g(x1,a) + g(x2ib)] 
X^+Xg-X 

M(g(x,a)) + M(g(x,b)) 

Talcing advantage of this relation, we can obtain functions 

satisfying (1.2) by starting with functions    0(x,a)    satisfying 

the simpler relation 

(2.5) 0(x,a) + 0(x,b) - 0(x,h(a,b)), 

and inverting: 

(2.4) g(x,a) - M"1(a(x,a)) - min [a(y,a) + xy]. 
y^O 

3«  SOLUTIONS OF THE FUNCTIONAL EQUATION 

If a is an M-dimensional vector with components 

&1'&2'>>*'CV & very Blnqple class of solutions of (2.3) is 

given by 

M 
(3.1)    0(x,a) - (a,0(x)) - Z a1a1(x), 

1-1 1 1 

h(a,b) - a + b. 
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Under various assumptions of analytlclty.  It may be shovm that 

aside from Inessential changes of variable,    a -»^(a),    these 

are the only solutions.    Rigorous proofs will be given 

subsequently. 

4.     PARAMETRIC REPRESENTATION 

If It Is possible to obtain the minimum value In {2A) by 

means of differentiation«  we obtain the parametric representation 

(4.1) g(x,a) - 0(y,a) + xy, 

x - - Oy(y,a). 

Assuming that 0(x,a) Is given by (3*1)« we face the Interesting 

problem of determining the a^ and Qi(x) so as to fit a 

given function g(x) In some optimal fashion. Having done 

this, we can find quick and useful solutions to the original 

varlatlonal problem, (1.1) et seq. The point Is that In this 

way we find exact solutions to approximate problems as opposed 

to the usual approximate solution to an exact problem. 

In subsequent papers, we shall discuss the multidimensional 

and continuous versions of these problems and techniques. 
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